Difference equations for discrete classical multiple orthogonal polynomials

نویسنده

  • D. W. Lee
چکیده

For discrete multiple orthogonal polynomials such as the multiple Charlier polynomials, the multiple Meixner polynomials, and the multiple Hahn polynomials, we first find a lowering operator and then give a (r + 1)th order difference equation by combining the lowering operator with the raising operator. As a corollary, explicit third order difference equations for discrete multiple orthogonal polynomials are given, which was already proved by Van Assche for the multiple Charlier polynomials and the multiple Meixner polynomials. © 2007 Elsevier Inc. All rights reserved. MSC: 33C45; 39A13; 42C05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

On Fourth-order Difference Equations for Orthogonal Polynomials of a Discrete Variable: Derivation, Factorization and Solutions

We derive and factorize the fourth-order difference equations satisfied by orthogonal polynomials obtained from some modifications of the recurrence coefficients of classical discrete orthogonal polynomials such as: the associated, the general co-recursive, co-recursive associated, co-dilated and the general co-modified classical orthogonal polynomials. Moreover, we find four linearly independe...

متن کامل

Second Order Difference Equations and Discrete Orthogonal Polynomials of Two Variables

The second order partial difference equation of two variables Du := A1,1(x)∆1∇1u+A1,2(x)∆1∇2u+ A2,1(x)∆2∇1u+ A2,2(x)∆2∇2u + B1(x)∆1u+ B2(x)∆2u = λu, is studied to determine when it has orthogonal polynomials as solutions. We derive conditions on D so that a weight function W exists for which WDu is self-adjoint and the difference equation has polynomial solutions which are orthogonal with respe...

متن کامل

The Fourth-order Difference Equation Satisfied by the Associated Orthogonal Polynomials of the Delta-Laguerre-Hahn Class

Starting from the D!-Riccati Diierence equation satissed by the Stieltjes function of a linear functional, we work out an algorithm which enables us to write the general fourth-order diierence equation satissed by the associated of any integer order of orthogonal polynomials of the-Laguerre-Hahn class. Moreover, in classical situations (Meixner, Charlier, Krawtchouk and Hahn), we give these dii...

متن کامل

Bi-orthogonal Polynomials on the Unit Circle, Regular Semi-classical Weights and Integrable Systems

Abstract. The theory of bi-orthogonal polynomials on the unit circle is developed for a general class of weights leading to systems of recurrence relations and derivatives of the polynomials and their associated functions, and to functional-difference equations of certain coefficient functions appearing in the theory. A natural formulation of the Riemann-Hilbert problem is presented which has a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 150  شماره 

صفحات  -

تاریخ انتشار 2008